
Depth Perception by using Stereo Vision based on
Neuromorphic Device

Jianlin Lu

Master Thesis

February 2, 2018

Examiners

Prof. Dr. Petri Mähönen
Prof. Dr.-Ing. Marina Petrova

Supervisors

Prof. Dr. Petri Mähönen
Dr. Yulia Sandamirskaya

Prof. Dr. Giacomo Indiveri

Institute for Networked Systems
RWTH Aachen University



The present work was submitted to the Institute for Networked Systems

Depth Perception by using Stereo Vision based on Neuromorphic Device

Master Thesis

presented by
Jianlin Lu

Prof. Dr. Petri Mähönen
Prof. Dr.-Ing. Marina Petrova

Aachen, February 2, 2018

(Jianlin Lu)



ACKNOWLEDGEMENTS

Here I would like to express my great gratitude to many people, without their support
I won’t have the chance to step into the neuroscience field and can not complete this
thesis either.
Firstly I would like to express my particular gratitude to my supervisors Prof. Dr.
Giacomo Indiveri and Dr. Yulia Sandamirskaya at INI(Institute of Neuroinformatics,
University and ETH Zurich), for giving me this opportunity to come to Zurich and
study at INI, for their patience to guide and teach me. They are always so kind and
try everything they can to help me, which I really appreciate a lot.
I also want to express my great gratitude to my supervisors Prof. Dr. Petri Mähönen at
iNETS(Institute for Networked Systems, RWTH Aachen University), for supporting
my thesis outside the institute, so that I have this chance to come to Zurich from
Aachen. I’m also very grateful for his concern and support during this project.
And I also want to express my great gratitude to Dr. Ljiljana Simić at iNETS for the
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ABSTRACT

Depth perception by using stereo vision is an important feature which enables both
living beings and artificial visual processing systems to perceive their surroundings in
3D and perform interaction with the environment like planning goal-directed actions.
Since both living beings and artificial visual processing systems sense the scene by us-
ing two sensors located at slightly different position, leading to two slightly different
projections of the scene in two retinas, a classical problem in stereo vision domain is
involved here: the stereo correspondence problem, which deals with the challenge of
finding visual correspondences of the same features from two different views. While
the organism solves this problem effortlessly and efficiently, state of the art computer
vision can hardly achieve the same performance in terms of speed, precision and
consumption of power. The main reason lies within the structure of the hardware
they used. Traditional visual processing systems capture visual information by taking
static images at regular time intervals, where a great amount of redundant data are
derived and processed. And the traditional digital computers process information
sequentially at relativistic speed. For these reasons, a stereo spiking neuron network,
which is capable of solving the stereo correspondence problem and perceiving depth,
is presented. This neural network will be implemented on bio-inspired neuromorphic
processor and use spikes as inputs from the event-based neuromorphic sensors. These
neuromorphic engineering devices are considered to be massively parallel, compact,
low-latency and low-power analogous to those of their real biological counterparts.
Although the analog neuromorphic processors have so many advantages, a common
problem on analog device is still inevitable, namely the mismatch problem, which
affects the performance of the neural network on hardware device.
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1

INTRODUTION

1.1 BACKGROUND AND MOTIVATION

Visual perception is the most important approach for almost all the organism to sense
the environment, while depth perception is an advanced feature for higher-level crea-
tures to acquire information from their surroundings in 3D, thereby help them to
perform better interaction. Many cues exist and can be exploited to achieve depth
perception, like lighting and shading cues, perspective cues, oculomotor cues, motion
cues, interpositional cues, as well as binocular cues [1]. In the view from biological
evolution, binocular cues provide faster and more precise depth perception, which
brings great advantage involving competition in nature, so they are widely used by
many more competitive living beings like mammalian and fowl. These living beings
usually have a common feature: they usually have two eyes located horizontally,
which results in two slightly different projections of a scene in two retinas. And their
brain has the ability to process these differences, through which they can perceive the
depth. This process is referred as stereopsis, which is the key principle involved in
depth perception derived from binocular cues.
Depth perception is also an extremely important feature for robots or other artificial vi-
sual processing systems. These systems are usually designed to execute some tasks in-
volving stereo vision, like make sense of their surroundings in 3D, plan goal-directed
actions for robots, make segmentation of objects, estimate the geometrical properties
of objects. For autonomous vehicles, depth perception is also a crucial topic, because it
can supports navigation and map formation. Among these systems, computer vision
is widely introduced. Computer vision has gained enormous research interest over
the last two decades with exponentially growing focus on stereo vision, and spawned
a variety of approaches and algorithms to complete visual tasks. It seems that the
computer vision can play a same role in artificial visual processing systems as the
biological vision for the organism.
With further researches, it was found that even the low-level creatures like insects
have a better performance than state of the art computer vision in terms of speed and
precision, requiring far less computational might and consuming only a fraction of the
power. The main reason for this performance difference lies within the structure of
the hardware itself. Traditional computers are digital, centralized and process infor-
mation sequentially at relativistic speed, while neural circuitry consists of networks
of massively parallel connected units, propagating signals at very low speed. For
this reason, neuromorphic engineering is extensively developed nowadays, which is
inspired by the neural networks of the mammalian brain. An artificial visual process-
ing systems can be perform faster depth perception with lower power by exploiting
neuromorphic processors and sensors.

1
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1.2. OVERVIEW OF THE PROJECT AND THESIS 2

Another disadvantage of traditional computer vision is that it generally represents
visual information in the form of static frames, which are captured at fix rate. This
approach is considered as inefficient nowadays owing to a great amount of redun-
dant information in subsequent frames. This paradigm also lacks precise temporal
dynamics. These limitation is overcome in event-based vision systems, where visual
information is coded and transmitted as events. The event-based sensors generate
events only when the scene is changed. In this way, much less redundant information
is generated and processed, allowing for faster and more energy efficient systems.

1.2 OVERVIEW OF THE PROJECT AND THESIS

In this project, a stereo spking neural network is presented, which is highly inspired
by the approach of Marr and Poggio [2]. Based on this approach, further spatial and
temporal correlations are introduced, in order to overcome the shortcoming of the
original approach. The network is implemented on an analog neuromorphic device,
leading to a common problem: mismatch. Several solutions will be given to gain a
better performance.
This thesis contains three parts. In chapter 2, some crucial background knowledge
involving this project will be given, including the geometrical model for depth per-
ception, epipolar geometry, as well as the most important problem in stereo vision:
the stereo correspondence problem. After that, the event-based approach and the
physiology of stereopsis will be brief introduced. Chapter 3 presents the spiking
neural network beginning with an overview of Marr and Piggio’ approach. A software
simulation of the network will be given to show the performance of the network.
Finally, in chapter 4, the implementation of the neural network on neuromorphic de-
vice will be detailedly introduced, before which some introduction of neuromorphic
sensors and processors will be given. The last part of this chapter will discuss some
solutions to overcome the mismatch problem on analog devices.
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2

FUNDAMENTALS

In this chapter several aspects of crucial fundamental knowledge will be provided.
Firstly comes an overview of stereo vision, in which a simple geometrical model for
depth perception, as well as the classical problem in stereo vision: the stereo corre-
spondence problem will be introduced. And then is the event-based approach referred
to stereo vision. Here also involves Address-Event Representation (AER), which can
play an important role for communication in neuromorphic systems. Finally, some
background knowledge in neuroscience and neuromorphic engineering field related
to stereo vision will be briefly introduced.

2.1 STEREO VISION

2.1.1 Stereopsis for Depth Perception

Stereopsis is a term that is most often used to refer to the perception of depth and 3-
dimensional structure obtained on the basis of visual information deriving from two
eyes by individuals with normally developed binocular vision [3]. Binocular vision
results in two slightly different images projected to the retinas because of the different
lateral positions of two eyes. The differences are mainly in the relative horizontal
position of objects in the two images. These positional differences are referred to
as horizontal disparities or, more generally, binocular disparities. Applying these
differences to a geometrical model, the distance between the object and the eyes can
be obtained. So a further question occurs spontaneously: how and when can two
projected images on two retinas be regarded as from an identical object?

2.1.2 A simple geometrical Model for Depth Perception

In figure 2.1 a simple geometrical model for depth perception is provided. El and Er

present the left and right eye respectively, and similarly, Rl and Rr present the left
and right retina of the eyes correspondingly. Here, for the sake of simplification, we
assume that the retinas are level. More background knowledge of epipolar geometry
will be given in later section. In the figure, an object at positionO has been sensed and
projected to the left and right retina at position D and F through the entry points of
the eyes at position A and B. The distance between the object and the eyes OC is here
refered to as z. Now we can go into the investigation of the relationship of z and the
difference of the projecting position between two renitas, which is also referred to as
disparity d.
It can be easily proved that there are two pair of similar triangles in figure 2.1: namely
4OAC and4ADE,4OBC and4BFG. So the disparity d can calculated as:

3
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2.1. STEREO VISION 4

d = DE +GF (2.1)

= AE(
DE

AE
+
GF

BG
) (2.2)

= AE(
AC +BC

OC
) (2.3)

=
AE ×AB

OC
(2.4)

Usually, the distance between eyes and retinas AE, as well as the distance between
two eyes AB is certain. So we set k = AE × AB, OC is the depth of the object z, so
finally, we get:

d =
AE ∗AB
OC

=
k

z
(2.5)

which clearly shows us that the disparity d and the object depth z have a certain
inverse proportion relationship with a coefficient k. In other word, the depth of the
object can now be presented by exploiting the binocular disparity!

FIGURE 2.1: A simple geometrical Model
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2.1.3 Epipolar Geometry

In stereo vision domain, a 3D scene is usually captured by two cameras located at
two distinct positions. They take a picture of the same scene from different points of
view, leading to two different projections onto the 2D images as shown in figure 2.2.
The epipolar geometry then describes the relation between the two resulting images.
Actually there are a number of geometric relations between the 3D points and their
projections, all these relations are derived based on the assumption that the cameras
can be approximated by the pinhole camera model.
A general stereo setup comprise two cameras at two distinct positions. As shown in
figure 2.3, two cameras are located at Cl and Cr, and two vertically placed rectan-
gles with their own coordinates (xl, yl) and (xr, yr) represent the image planes of the
cameras respectively. Now, three fundamental definition in epipolar geometry will be
given. The epipolar plane is defined as a plane spanned by the centers of two cameras
and an other arbitrary point in 3D space. While the epipolar lines in the images are
formed by the projections of all the points lying on an epipolar plane. In other word,
the epipolar lines are formed by the intersection of the epipolar plane with the image
planes. The epipolar point is know as the projection of one camera center on the image
plane of another camera. Different epipolar planes can distinguish each other by their
inclination φ. In figure 2.3 (a), the horizontal epipolar plane φ = 0 is indicated by the
shaded blue plane, while another epipolar plane with φ > 0 is indicated by the shaded
red plane in (b).
Now the challenge is to find the relationship between the image coordinates and
the inclination φ of the epipolar plane, which can be solved by using the concept
of image rectification. Image rectification is a standard procedure in machine vision
performing a homographic transformation that reprojects the image planes so that
they are coplanar as shown in figure 2.3 (c). The rectified images then can be fed into
the further processing. There is a great amount of algorithms concerned with image
rectification [4] [5] [6] [7], which won’t be further expanded here.

FIGURE 2.2: Epipolar
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FIGURE 2.3: Epipolar Geometry
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2.1.4 The Stereo Correspondence Problem

Depth perception by using stereo vision is subject to the well known stereo correspon-
dence problem, which refer to the problem of ascertaining which object (or which part
of the object) in one view correspond to which object (or which part of the object)
in another view. The challenge of finding visual correspondences of the same object
from two different views is also crucial to reconstruct the observed scene. The stereo
correspondence problem is considered as significant and difficult in a stereo vision
application.
In order to clarify this problem, in figure 2.2 we consider a simple scenario with
two objects A and B in the two-dimensional world on the horizontal plane. After
projection the positions of the objects are decayed into one-dimensional world on each
retina, where the corresponding positions on the retina are denoted by the indices
Xl and Xr. As we can observe from the figure, object A and B produce uniform
projections on both retinas at position 3 and 1. Now image that the objects can not
be observed, and the only information that is available now is the projections on both
retinas. We have the projection of object A on the left retina at position 3, but we have
no further information to identify which of the projections on the right retina as the
same object A. In this situation, it is easy to reconstruct the scene at false position
A′ and B′, which we consider as false targets. The stereo correspondence problem
here is considered as an ill-posed problem and can not be solved without certain
assumptions about the scene. Marr and Poggio proposed an admirable approach [2]
in 1976 to solve the stereo correspondence problem based on two assumptions about
the physical world. This approach, as well as the ideas behind, will be detailedly
presented in next chapter.
Before going to other aspects, it is helpful to clarify some definitions here. Like our
example in figure 2.2, if an object projects to the exact same positions on both retinas,
we say this object have zero disparity. All the points with zero disparity are considered
as the horopter. The points which have a closer location to the eyes than those on
the horopter are known as points with crossed disparity (d < 0), whereas those lie
further away are said to have uncrossed disparity (d > 0). The stereo correspondence
problem can also occur when more than two views are taken, like in the situation that
many caremas are used or the insects with more than two eyes, which lead to a more
complicated problem.
Although humans seem to perform stereo correspondence effortlessly, the problem is
still ill-posed since scientists struggle to reproduce a convincing model on a machine.
Our brain uses complex cues from the outside world and from knowledge gained
through experience to impose additional constraints like color, opacity, spatial and
temporal coherence in order to solve the stereo matching problem [8]

2.2 EVENT-BASED APPROACH TO STEREO VISION

2.2.1 Event-based Approach

An event can be defined as "a significant change in state" [9], which usually contains
following element: the time of its occurrence, location and polarity. An events can
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FIGURE 2.4: The Stereo Correspondence Problem

either be an off-event or an on-event, depending on the polarity of the change of
illumination.
Event-based approach, which is also referred to as event-driven approach, is consid-
ered as a novel method has high-temporal resolution, wide dynamic range and low
power consumption by contrast with the traditional frame-based approach. Tradi-
tional frame-based systems usually produce very high redundant data throughput
and computational demands because of their fundamental principle of capturing and
processing sequences of still frames, while the bio-inspired event-based vision sys-
tems are fully asynchronous. They code only the significant change of the visual infor-
mation, and transmit the information as events, thereby on the one hand exact times of
input signal changes have been gained, leading to a very precise temporal resolution
and wide dynamic range, and on another hand much less redundant information is
generated and processed, allowing for low power consumption.
A classic natural scene would always be helpful for understanding event-based ap-
proach. Consider you are in a soccer game, where the striker are just blasting the free
kick into the net, which is a representative scene with a fast moving object in front
of static background. In order to acquire the entire trajectory of the ball by using
conventional video camera, an extremely high frame rate must be used, whereby the
static background like the goalkeeper and the net are acquired over and over again,
leading to large amounts of redundant data containing only old information, while
our crucial data, the trajectory of the ball, can never be entirely acquired no matter
how high frame rate are used. This is the limitation of the traditional frame-based
approach, where under- and oversampling occur simultaneously.
However,event-based systems can compute stereo information much faster using the
precise timing information to match pixels between different sensors. Several studies

Yulia Sandamirskaya


Yulia Sandamirskaya


Yulia Sandamirskaya


Yulia Sandamirskaya




2.3. NEUROSCIENCE OF STEREO VISION 9

have applied events timing together with additional constraints to compute depth
from stereo visual information [10] [11] [12] [13].

2.2.2 Address Event Representation (AER)

The Address Event Representation(AER) is an asynchronous handshaking protocol
used to transmit signals between neuromorphic systems. Neurons playing a role as
sender encode the analog signals they transmit with spike address events. Every time
a neuron of sender generates an event, it attempts to write its address onto a common
transmission bus which is shared by all the other sender neurons. Arbitration circuits
on the periphery of the chip ensure that the addresses are sent off sequentially. The
AER handshaking protocol ensures that the sender and the receiver respectively write
and read from the bus only when they are allowed to.
An example of the AER communication between two populations of neurons is given
in figure 2.5. Whenever a sender neuron fires (n1 to n4 in the figure), it produces
a digital event. Each event encompasses the address of its source in a string of bits
and the time of occurrence. The communication comprises two sites. At the site of
the sender, multiple neurons are multiplexed onto a single communication channel
whereas at the site of the receiver, AER events are demultiplexed into individual
spikes that address different synapses(s1 to s4 in the figure). Multiplexing requires
an AER encoder and demultiplexing requires a AER decoder. AER circuits are im-
plemented using asynchronous logic, where a four-phase bundled data handshake
protocol is used. If a neuron on the sender site fires, it writes its address onto the
data bus as soon as it is selected by the arbiter. Once the data is validated, the arbiter
sends a request by raising the REQ line. The synapse that receives the event responds
with an acknowledgement signal. Once the acknowledgement has been received by
the sender, it releases the data and re-acknowledges by removing the request. At this
point, the receiver releases the ACK line and the transmission is completed.

2.3 NEUROSCIENCE OF STEREO VISION

In this section, a brief introduction involving the physiology of stereopsis will be
given. Reviewing the research history of stereopsis in neuroscience field, it would be
found that the cats have made a great contribution. In the early 20th century, Ramon
y Cajal proposed the idea that the binocular cells merge the input from corresponding
retinal regions dates, which was confirmed by Hubel and Wiesel who found such cells
in the visual cortex of cats. But unfortunately, these cells had receptive fields only at
corresponding retinal positions, implying that they could only encode objects with
zero disparity and thus, this did not explain how objects of differing disparities could
be simultaneously perceived. In 1967, a set of binocular cells with varying receptive-
field offsets were discovered in the visual cortex of cats. Thanks to the cats again,
people now have the definition of disparity detectors, which have been extensively
studied for so many years since their discovery. The following research also showed
that these disparity detectors were the most important component of stereopsis. While
disparity-tuned cells already exist in some sub-cortical areas, it seems that their se-
lectivity is derived from the visual cortex rather than from the retinas themselves.
Disparity-tuned cells have been found in the cats’ pulvinar nucleus and the nucleus
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FIGURE 2.5: Address Event Representation (AER)

of the optic tract (NOT), but not in the lateral geniculate nucleus (LGN). The LGN
is divided into layers of parvocellular and magnocellular cells. The parvocellular
neurons respond to color and exhibit higher spatial resolution than the magnocel-
lular neurons. Conversely, magnocellular neurons have higher temporal resolution
but are only sensitive to luminance. It is important to note that the parvocellular
system is purely chromatic for low spatial and low temporal frequencies. In the case
of high spatial and temporal frequencies, however, the parvocellular system shows
photometric additivity and conveys pure luminance signals. Through selective lesion
of either system, it can be shown that fine stereopsis is confined to the parvocellular
system, whereas both systems are capable of detecting low-frequency disparities. A
large number of cells in the superior colliculus are sensitive to coarse disparities,
suggesting that these cells serve to control vergence eye movements or fixation on
stimuli that move in depth. The visual cortex provides the main input for the superior
colliculus, containing a topographic map of visual space. It is not known whether
this map extends to the third dimension. There are two types of disparity detectors,
which respond either to position or phase disparity, both of which are located in the
superior colliculus. The primary visual cortex (V1) is the first site where disparity
selectivity occurs. The mechanisms underlying disparity detection in V1 are very well
understood. Conversely, much less is known about disparity processing in the higher
visual areas. In addition to the simple disparity detectors in V1, more specific cells
that are also sensitive to relative disparity, depth discontinuities, motion and shape
are located in the extrastriate areas. Figure 2.6 shows the visual pathways from the
retina to the cortex in the human brain. In the visual cortex of primates, neurons that
are selective to disparity were first detected in V2 by Hubel and Wiesel and later in V1
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FIGURE 2.6: Physiology of Stereopsis

and other visual areas. In V1, more than half of the cells of both physiological types,
namely simple and complex cells, were found to be disparity selective. Experimental
studies showed that complex cells had an increased sensitivity to disparity in random-
dot stereograms. This suggested that complex cells specifically encode information
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about the relationship between the two images in the monocular receptive fields.
Conversely, simple cells respond to arbitrary excitatory stimuli in their receptive fields
and thus, the information about disparity may be disturbed by artifacts of the stimulus
shape and location.
Since the author’ background is electrical engineering, which is so far away from
neuroscience domain, many other papers and books have been consulted and quoted
as references when this section was being written. If the audiences have interest in
this part of knowledge, an outstanding book -Perceiving in Depth- [14] written by
Howard and Rogers is recommend here.



3

THE SPIKING NEURAL NETWORK FOR STEREO

VISION

In this chapter, a spiking neural network capable of depth perception by using stereo
vision is proposed. Due to the fact that our work is highly inspired by the approach
of Marr and Poggio, a detailed revisit of their approach will be presented in the
first section. After that the improved spiking neural network is introduced from the
coordinate system of the network to every layer of the network. Finally, a software
simulation is made in order to prove the availability of the spiking neural network, in
which the property of the network can be investigated concretely.

3.1 REVISIT OF MARR AND POGGIO’S WORK

3.1.1 Marr and Poggio’s Appoach

In the mid 1970’s Marr and Poggio proposed the first kind of cooperative algorithms,
which is under the suggestion of the pioneering work of Julesz [15] proposing that
stereo vision is subject to a cooperative process. Marr and Poggio’s approach is now
considered as the the key principle and neural mechanism of binocular vision of the
solution to the stereo correspondence problem mentioned in section 2.1.3.
Just as mentioned in section 2.1.3, the stereo correspondence problem is an ill-posed
problem and can not be solved without certain assumptions. In Marr and Poggio’s
work, two general rules are derived from the physical constraints of the environment:

• Uniqueness: Each point in each image corresponds to a unique target in the field
of view.

• Continuity: The perceived depth varies smoothly except at the edges of objects.

The first rule is derived from the fact that a feature cannot be assigned to multiple
objects, as they would occlude each other from the observer’s view. The second rule
is a direct consequence for consistent objects. A scene consists of objects which are
consistent, causing a smooth variation of depth. Inconsistencies (such as edges) can
only be produced by transitions from one object to another and are assumed to occur
less frequently.
A simple algorithm representing a network that operates on binary images has been
proposed to solve the stereo correspondence problem. In figure 3.1 the behavior of the
network is depicted in the two-dimensional world on the horizontal plane. For each
combination of pixel positions Xl and Xr from the left and right retinal image, a cell
is placed, each of which represents a point in space corresponding to the intersection
of the lines of sight of its associated pixels. A unique disparity value d = Xl − Xr

13
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FIGURE 3.1: Marr and Poggio’s Appoach

is assigned to each cell. As the cell is active, it reports a true target at its associated
position. The resulting network can be thought of as a way of sampling the field of
view. Like in figure 2.2, the only information that is available now is the projections on
both retinas at positions 2 and 4, which serve as the input of the network. The initial
state of the network is obtained by setting the units active if both of its associated
pixel inputs correlate. Accordingly, the initial state represents the set of all potential
targets, namely all the true and false targets, which are shown in figure 3.1 as black
and gray cell. Now, the task is to figure out which two targets among these four
potential targets are the true ones. To solve this task, two rules stated above are used
to derive either excitative or inhibitive connectivity among the cells. The uniqueness
rule is implemented by inhibition along blue lines of sight whereas the continuity
rule is obtained by excitation along red lines of constant disparity. In other words,
the uniqueness rule tells us that each point in each image corresponds to at most one
target in the field of view, so if a pixel at position 2 on left retina is active, it means that
there could be only one true target between targets A and A′. And the continuity rule
is employed in this network in the way that an arbitrary active cell in the network will
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serve as excitative evidence to support other cells which have the same disparity. As
a result, the true targets are successfully identified because they excite each other and
inhibit the false targets.
Although this algorithm works flawlessly on scenes with depths that run parallel to
the view of the observer, its weakness is also obvious. If the surfaces of the objects
are tilted in depth, the units which are initially active do not lie on the same line of
disparity and thus, they cannot excite each other.

3.1.2 Improved Marr and Poggio’s Appoach

At the end of last subsection we mentioned the shortcoming of Marr and Poggio’s
appoach that it cannot be applied to natural scenes comprising surfaces of varying
depth. This scenario is illustrated in figure 3.2. The two static retinal images show
the edges of a plane that is slightly tilted in depth, which leads to a result that there is
no excitatory connectivity between the units that represent the left edge (1, 1) and the
right edge (3, 4), because they don’t have the same disparity, and thus, the network
fails to suppress the false targets.

FIGURE 3.2:

This defect can be amended by using dynamic inputs and exploiting temporal correla-
tions. In this improvement, the network’s analog cells are replaced by spiking neurons
and the input of the network is not binary images but an array of retinal spiking
neurons that encode temporal changes in illumination. In figure 3.3 a new scenario
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FIGURE 3.3:

is illustrated assuming that the right edge of the tilted plane moves towards the left
edge, and the time is encoded by shading, whereby more recent spikes are represented
by darker gray values. Here the neurons in the network act as simple coincidence
detectors that will create a spike whenever both of their corresponding retinal neurons
fire simultaneously within a short time window. Consequently, a moving target leads
to only the activity of the coincidence detectors at its own disparity, but also the
one at neighboring disparities. As it can be observed in figure 3.3, the right edge
(3, 4) not only generates activity at its actual disparity d = 1 but also at neighboring
disparities d = 0 and d = 2. This is caused by coincidences between spikes from
retinal neurons, which encode the actual position of the target, and neurons from
the other retina, which represent positions that the target recently passed. In other
words, the sensitivity of the coincidence detector to coarse temporal delays produces
supporting evidence at disparities where there is no actual target. The analogy to
the excitation along the line of equal disparity in Marr and Poggio’s approach is now
obtained by summing the evidence from coincidence detectors with equal disparity.
Such integration is performed by an additional layer of disparity detectors. A more
detailed explanation of coincidence detectors and disparity detectors will be provided
in the following section.
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FIGURE 3.4: Extended Network in the 3-dimensional World (a)

FIGURE 3.5: Extended Network in the 3-dimensional World (b)
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In figure 3.4 and figure 3.5 the extended network in the 3-dimensional world with
2-dimensional inputs, which are a more plausible scenario of biological retinas and
cameras, is illustrated. They also implement a cooperative mechanism that is effective
on the plane of fixed disparity. For the sake of simplification of the explanation which
follow, we define the plane of constant disparity as Ed and the plane of constant
horizontal cyclopean position as Ex, whereby disparity is defined as d = Xl − Xr

and horizontal cyclopean position as X = Xl +Xr. In figure 3.5, each layer is similar
to the two-dimensional case in figure 3.3. In the same way, the times at which the
neurons are active are encoded by shading using the same notation as for temporal
images, and more recent spikes are represented by darker gray values.
In the approach of Marr and Poggio, the activity of a cell in the network will be
considered as supporting evidence for the cells which have the same disparity, and as
countervailing evidence for the cells located at the same lines of sight. Accordingly, in
this improved approach, excitative connectivity will be applied on the neurons on the
constant disparity plane Ed, while inhibitive connectivity on the constant horizontal
cyclopean position plane Ex, which is perpendicular to plane Ed. Following, two
examples will show how the improved approach solves the stereo correspondence
problem using spatial and temporal information, which is also referred as motion
cues. Through these examples a further clarification why the activity of the neurons
on the constant disparity plane Ed can be considered as supporting evidence while
the one on the constant horizontal cyclopean position plane Ex as countervailing
evidence is derived.
In the first example, the stimuli are tilted moving bars. In figure 3.6, the bars in the left
and right images have the same orientation and move in the same direction, which is
considered as true match. Accordingly, only activity on the constant disparity plane
Ed is produced. In contrast, figure 3.7 shows the bars have different orientations
but move in the same direction, which is considered as false match and activity is
partially spread along the constant horizontal cyclopean position plane Ex. In this
example, whether the match is true or false is determined by spatial compliance. If
the activity of the whole network is integrated in a way such that the excited neurons
on plane Ed increase in sum, while ones on plane Ex do the opposite, a measure of
the correlation of the temporal images can be obtained. In order to select the best
match, the winner-takes-all algorithm can be employed to all potential matches. A
more detailed explanation of this algorithm will be provided in the following section.
In contrast with the first example where the network activity is dominated by spatial
correlation, temporal correlation will be used to identify the correct match. This is
illustrated in figure 3.8 and figure 3.9 and the stimuli are vertically oriented bars,
which means they have the equivalent spatial structure in this case. In figure 3.8,
the bars in the left and right images move in the same direction, which is considered
as true match, and as a result, only activity on the constant disparity plane Ed is
produced, while in figure 3.9 where the bars move in the different direction leading to
activity on the constant horizontal cyclopean position plane Ex.
While the approach of Marr and Poggio cannot be applied to natural scenes com-
prising surfaces of varying depth on account of using static images, the improved
approach can overcome this shortcoming by using dynamic inputs and exploiting
spatial and temporal correlations.
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FIGURE 3.6: Ture Match

FIGURE 3.7: False Match
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FIGURE 3.8: Ture Match

FIGURE 3.9: False Match
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3.2 THE SPIKING NEURAL NETWORK

The approach of Marr and Poggio provides a classic solution to solve the correspon-
dence problem und to measure the depth, which inspires the spiking neural network
proposed here. However, the neural network is characterized by two major differ-
ences [16]: first, dynamic spatiotemporal visual information in the form of spike
trains, which are directly obtained from event-based neuromorphic vision sensors,
substitute static images serving as inputs to the network; and second, the network is
composed of Leaky Integrate-and-Fire (LIF) spiking neurons operating in a massively
parallel fashion, which are self-timed and express temporal dynamics analogous to
those of their real biological counterparts. In this section, firstly the coordinate system
used in the network will be defined, and then the spiking neural network will be
presented from the overall structure to every layer.

3.2.1 The Coordinate System

Similar to the cells in the approach of Marr and Poggio, in the spiking neural net-
work each individual neuron acts as a cognitive representation of a unique location
in 3D space. As the input of the network is two two-dimensional temporal images
obtained from event-based neuromorphic vision sensors, a mapping is performed to
project two retinas into the network in the three-dimensional world. Here we define
this three-dimensional coordinate system of the network as disparity space, which is
illustrated in figure 3.10. The representation of the disparity space by using a cube
is just for the sake of intuitionistic explanation, where the horizontal position of the
left retina Xl and the horizontal position of the right retina Xr are mapped to be
perpendicular. Further more, two diagonals are respectively defined as horizontal
cyclopean coordinate X = Xl +Xr and disparity coordinate d = Xl −Xr. Now, each
neuron of the network can be uniquely described by the triplet (x, y, d) by using the
mappingM:

N2 × N2 =⇒ D3 (3.1)

(xl, y)× (xr, y) =⇒ (x, y, d) = (xl + xr, y, xl − xr) (3.2)

where (x, y, d)) are the network coordinates and their range is the disparity space D3.
Finally, each neuron in the spiking neural network is uniquely assigned a horizontal
and vertical cyclopean coordinate x and y, as well as a disparity coordinate d. To-
gether, these coordinates represent a point in disparity space D3, which corresponds
to the neuron’s cognitive representation of a location in 3D space. The absolute-world
coordinates of this location are determined by the intersection of the lines of sight
from the pair of image points, which can be derived from the network coordinates by
means of the inverse mapping functionM−1.
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FIGURE 3.10: Disparity Space

3.2.2 The Structure of the Spiking Neural Network

The final spiking neural network for depth perception is an extension of the Marr and
Piggio’s approach by adopting spatial and temporal correlations described in previous
section. An abstract view of the entire structure of the network is illustrated in figure
3.11, which consists of four major neuron populations. Two populations of sensory
neurons denoted as L and R, which come from the dynamic vision sensors(DVS)
consisting of two-dimensional pixel arrays, serve as the input of the network. These
neurons will fire whenever an event at a specific pixel occurs on the DVS retina. Fur-
thermore, they will excite another population of neurons C referred to as "coincidence
detectors" in next layer, whenever two input events from the respective retinas occur
within a specific time window. The size of the population C is indicated by n3 because
the neurons within it encode coincidences that occur in disparity space. The last
population of neuronsD referred to as "disparity detectors" pools responses fromC by
using both excitative or inhibitive connectivity. Finally, a winner-takes-all mechanism
is implemented by the recurrent inhibitory connections among populationD, in order
to suppress disparity responses to false targets and signal only correct disparities.



3.2. THE SPIKING NEURAL NETWORK 23

FIGURE 3.11: Overview of the Structure

A detailed view of a horizontal layer of the network is given in figure 3.12. For the sake
of visibility, only a horizontal line of retinal neurons at fixed vertical position y is con-
sidered. Hence, the neurons of corresponding coincidence and disparity detector lie
within a horizontal plane. An object is sensed by two DVS and accordingly projected
onto their retinal neurons. The retinal neurons on DVS capturing temporal images
serve as the input of the network. An spike from the retinal neuron with a specific
spatial position will be sent to the coincidence detector, if a change in illumination at
this position at a particular time occurs. A horizontal layer of neurons in C signals all
the pairs of spikes come from the corresponding horizontal lines of retinal neurons
in L and R within a specific time window into the disparity space (x, y, d). As a
result, each spike generated by a spatial neuron of coincidence detector represents
a potential target at the corresponding real-world disparity position, and thus, the
complete population of coincidence detectors encodes all potential targets including
all the true and false disparities. In order to suppress false disparities and derive only
correct disparities, a binocular correlation mechanism is implemented by the disparity
detectors by integrating the spikes from coincidence detectors within the planes of
constant disparity Ed and constant cyclopean position Ex. The spikes come from the
constant disparity plane Ed of coincidence detectors constitute supporting evidence
for true matches and will excite the disparity detector, whereas the spikes come from
the constant cyclopean position plane Ex denotes countervailing evidence and will
inhibit the disparity detector. Last but not least, mutual inhibition among disparity
detectors that represent spatial locations in the same line of sight, which is refered
as winner-takes-all mechanism, will enforce the uniqueness constraint as described
in the approach of Marr and Poggio. For a disparity detector which represents a false
disparity at a specific position, there must be another neuron located somewhere along
the line of sight which represents the correct disparity simultaneously. Furthermore,
this correct neuron integrates more coinciding evidence, leading to a faster response,
and thus, this response can then be recurrently fed as an inhibitory input into the
neuron located at the false disparity in order to suppress its response. In other word,
if a neuron of the disparity detector fire, it will inhibit all the other neurons located in
the same line of neither left nor right sight.
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FIGURE 3.12: The Spiking Neural Network
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3.2.3 The Model of Neurons in the Network

The output of the sensory neurons serving as input populations of the spiking neu-
ral network is simply the sum of Dirac function δ(t) located at the times the spikes
occurred.

{
Ol

xl,y
=
∑

i δxl,y(t− ti)
Or

xr,y =
∑

j δxr,y(t− tj)
(3.3)

where the indices i and j indicate the spike times of the retinal neurons (xl, y) and
(xr, y) respectively. The neurons with leaky-integrate-and-fire (LIF) dynamics (Gerst-
ner and Kistler, 2002) are used to implement a neural coincidence detection mecha-
nism, thus, membrane potential vc(t) of a LIF coincidence neuron is described by:

{
τc

dvc(t)
dt = −vc(t) + Ic(t), vc(t) < θc

vc = 0, vc(t) ≥ θc
(3.4)

where the time constant τc is the neuron’s leak and θc the threshold at which the
neuron fires. Ic(t) is the received input from a pair of retinal neurons, which can
be described by:

Ic(t) = w
∑
i

δxl,y(t− ti) + w
∑
j

δxr,y(t− tj) | c =M(xl, xr, y) (3.5)

where the synaptic weights w are equally sized for both inputs. The subscript vector
c = (xc, yc, dc) corresponds to the unique spatial representation of the neuron in
disparity space. Similarly, the disparity detectors are also modeled by LIF neuron
dynamics, but with a distinct time constant τd and a firing threshold θd:

{
τd

dvd(t)
dt = −vd(t) + Id(t), vd(t) < θd

vd = 0, vd(t) ≥ θd
(3.6)

where Id(t) is the input of disparity detector from the coincidence detector, which can
be described by:

Id(t) = wex

∑
c∈C+

∑
k

δc(t− tk)− win

∑
c∈C−

∑
k

δc(t− tk) (3.7)

where the indice k indicates the spike times of the coincidence neuron c. wexc and
winh are constant excitatory and inhibitory weights respectively, while the regions
C+ and C− are squared windows on the constant disparity plane Ed and the constant
cyclopean position plane Ex respectively, which can be defined as:

C+ = {c ∈ C | (|xc − xd| ≤ ω) ∧ (|yc − yd| ≤ ω) ∧ (dc = dd)} (3.8)
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C− = {c ∈ C | (|dc − dd| ≤ ω) ∧ (|yc − yd| ≤ ω) ∧ (xc = xd)} (3.9)

where ω is half of the window size. In next section, a software simulation of the spik-
ing neural network will be presented, which will investigate how these parameters
effect on the network.

3.3 SOFTWARE SIMULATION

In order to perform a simulation of the full-size spiking neural network, a QT graph-
ical user interface written in C++ is presented. In figure 3.14, the network simulator
GUI is illustrated, which can greatly simplify the parameter adjustments. The input as
well as output files of the simulator are in the form of Address Event Representation
(AER) as shown in figure 3.13, where the input file involves timestamp, horizontal and
vertical position information x and y, source information distinguishing left or right
cameras and polarity information distinguishing ON or OFF events (seesection4.1.1).
The output file comprises horizontal and vertical position information x and y, as well
as disparity information d, constituting a disparity space. For the sake of acceleration
of the simulation, the size of the network can also be modified here, for example, a
smaller range of disparity can be set instead of simulating the whole disparity space.
What most important here are the parameters of coincidence detector and disparity
detector, where Tau determines how evidence from the past is weighted by adjusting
the neurons’ leak, while Threshold the threshold at which the neurons fire. Other
parameter can also be found in previous section.
The visualization of the simulator’s output by using MATLAB is illustrated in figure
3.15. In this test, the scene comprises a person walking from right to left, from far
to near. The first row of images combine frames of accumulated input from the
left(green) and right(purple) camera. The second row of images are the disparity
maps generated from accumulated disparity events, where colors refers to different
disparity. The last row shows the disparity maps after filtering. Here, only the dispar-
ity events which occur immediately after a coincidence event with the same disparity
space coordinates remain.

FIGURE 3.13: Input and Output Files
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FIGURE 3.14: GUI
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FIGURE 3.15: Simulation Result



4

REAL-TIME IMPLEMENTATION ON NEUROMORPHIC

HARDWARE

In this chapter, the real-time implementation of the spiking neural network based on
neuromorphic hardware will be presented. As our neural network comprises many
units that individually perform simple computations in a massively parallel manner,
the traditional hardware based on the Von Neumann architecture is no longer suitable.
Thanks to the progress of neuromorphic engineering, several neuromorphic proces-
sors capable of carry out the computations in a highly parallel manner, which can fully
leverage the advantages of the proposed neural network, are now available. They will
be briefly introduced in the first part of this chapter. For the sake of limited resource
on the neuromorphic devices, it is impossible to implement the entire network, and
thus, modifications of the network have to be carried out. During the duration of
implementation, we were accompanied by a carking problem: the mismatch problem,
so a few solutions that can overcome this problem will be given at the end of this
chapter.

4.1 NEUROMORPHIC HARDWARE

In its original form, the term "neuromorphic" described electronic analog hardware
that exploited the physics of silicon to mimic neuro-biological architectures present in
the nervous system. Nowadays, the definition has been extended to include any for-
mof analog, digital or mixed-signal implementation of a neural processing system. In
this section, two major neuromorphic hardware will be introduced: the neuromorphic
camera, which is used to sense the scenes and provide input to the neural network;
and the neuromorphic process, which is used to implement the neural network and
carry out the computations.

4.1.1 Neuromorphic Camera – Dynamic Vision Sensor

The advantages of event-based approach against frame-based approach have been
clarified in the previous chapter and the neuromorphic camera is such a neuromorphic
device that can provide with event-based temporal images. Before the introduction
of this device, a further comparison between space-time representation and event-
based representation of dynamic visual information will be given. The term "space-
time representation" occurs when traditional frame-based camera is used to capture
a dynamic by synchronized capturing of static images at discrete points in time. As
a result, only limited dynamic information is gained depending on the frame rate of
the camera. In contrast, a event-based camera has an admirable performance in such
a task.

29
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FIGURE 4.1: Event-based Sensor

In figure 4.1 an example is illustrated to explain this comparison. On the top of the
figure, a blue dot is rotating around a fixed midpoint in such a way that the radius
continuously increases. This blue serves as stimulus and the respective space-time
representation of this dynamic scene is depicted by the helix on the left of the figure.
The levels of grey here encode time. They do not correspond to intensities but to the
time at which the intensity changes in an asynchronous manner. The blue point is
captured at times t0, t1 and t2 and the corresponding static images are shown below.
In contrast, the resulting temporal image, which is opposition to conventional static
images, is shown on the right of the figure. Analogous to the static images, the
temporal images at times t0, t1 and t2 are shown below. It’s obvious that the temporal
images contain all information regarding space-time structure. If the blue dot stop
rotating at time t2, the traditional frame-based camera will keep generating images
that are exactly same as the last static image holding no further new information,
which bring a great amount of redundancy. In contrast, the event-based camera will
correspondingly stop generating images since the intensity of every single pixel of the
scene do not change. In summary, the event-based camera captures more information
in a dynamic scene and produces less redundancy in a static scene by contrast with
the traditional frame-based camera.
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FIGURE 4.2: DVS

Figure 4.2 shows the neuromorphic, event-based Dynamic Vision Sensors(DVS) and
its working principle. Vp represents the evolution of pixel’s voltage, which is propor-
tional to the log intensity, while Vd shows the corresponding generation of ON and
OFF events. As mentioned above, biological retinas encode visual information more
efficiently by transmitting less redundancy in an asynchronous manner in contrast
with the traditional frame-based camera. The asynchronous sampling strategy means
that biological retinas acquire not only spatial contrast at discrete points in time but
continuously sense spatial and temporal changes. The pixels of DVS only send out
information when they are exposed to a change in illumination. This compressed
informative output is in the form of events, removing redundancy, reducing latency,
and increasing temporal resolution as compared with conventional camera. The DVS
used is an Address-Event Representation (AER) silicon retina with a high spatial
resolution of 128 pixels. The DVS output consists of asynchronous address-events that
signal scene reflectance changes at the times they occur. Each pixel is independent and
detects changes in log intensity larger than a threshold since the last emitted event.
As shown in figure 4.2, when the change of in log intensity exceeds a set threshold,
an ON or OFF event is generated by the pixel depending on whether the log intensity
increased or decreased. The advantages of such a sensor, over conventional clocked
cameras, are that only moving objects produce data and thus reducing the load of
postprocessing. Additionally, the timing of events can be conveyed with very low
latency and accurate temporal resolution of 1µs, which means the equivalent frame
rate is typically several kilo Hertz. A further advantage of DVS is that pixels are
not bound to a global exposure time, allowing them to independently adapt to local
scene illumination resulting in high dynamic range. In order to process data on a
computer, a dedicated FPGA acquires the events from the sensor and attaches a digital
timestamp. The synchronized data is then transmitted over a USB connection to the
host computer for processing. Alternatively, events can also be send out in real-time
via an asynchronous, digital bus in order to directly connect it to a neuromorphic
processor for example.
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4.1.2 Neuromorphic Processor

Although there are many different kinds of neuromorphic processors from a structural
point of view, they all combine many instances of two common building blocks from a
function perspective: silicon neurons and synapses. There are two main purposes for
the development of neuromorphic processors. On the one hand in the computational
neuroscience field, neuromorphic processors they can be used as an alternative to
simulations, to investigate the behavior of large-scale spiking neural networks. The
cost of resource of such simulations depends on the size of the network and the
complexity of the neuronal models. These simulations are often very slow running
on traditional computers, even for the very powerful ones, while neural hardware is
capable of emulating large-scale neural networks in real-time, regardless of their size.
On the other hand in the neuromorphic engineering field, neuromorphic processors
provide an efficient way to implement event-based computing systems. Many years
of research into the brain shows that neural dynamics are essential for computation
and thus, the ability to reproduce biologically realistic dynamics is a core requirement
for neuromorphic processors.
There is a great amount of various forms of silicon neurons ranging from simple
linear-threshold units to complex multi-compartment models. Such models usually
comprise multiple functional blocks which represent the different computational prop-
erties including a block to model conductance dynamics, a block to generate spike
events, a refractory period block, and a block to adapt spike frequency. Another
important function of silicon neurons is to generate spike events, which is usually
achieved using a switching amplifier. The membrane potential is fed into the ampli-
fier, which produces a large output, but only after a given threshold is reached.
Although the silicon synapses seem to only have a simple function of connections
which transfer information among neurons, actually they also form the most im-
portant feature of the nervous system, which is the ability to dynamically change
synaptic efficacy. This mechanism, commonly termed synaptic plasticity, is a key
ingredient in the process of learning. Two main kinds of synaptic plasticity exist:
short-term plasticity (STP) and long-term plasticity (LTP). STP is solely driven by
pre-synaptic activity and it has short time constants, ranging from milliseconds to
seconds. STP describes a form of temporal filtering which has useful computational
properties (Fortune and Rose, 2001). There are two forms of STP: depression and
facilitation. In the case of depression, the effect of consecutive spikes is gradually
reduced, whereas the process of facilitation denotes the opposite. Both processes can
be modeled as linear filters with exponential decay (Thesis page 52). While STP has
useful computational properties, long-term plasticity (LTP) is the essential process
that makes it possible for a neural network to learn a task and express behavior. Unlike
STP, LTP is driven by both pre-synaptic and post-synaptic activity and it has the time
constants ranging from minutes to hours, days or even years. The implementation
of LTP in silicon is still a big challenge in neuromorphic engineering field and for
this reason, neuromorphic processors often employ programmable synapses, whereby
the learning rule is implemented off-chip. However, considerable focus is now being
placed on implementing the learning rules directly in silicon. (Thesis page 54)
Following, three concrete neuromorphic processors will be introduced for the sake of
better understanding of this kind of processors.
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4.1.2.1 Re-configurable on-line learning spiking neuromorphic processor (Rolls)

FIGURE 4.3: ROLLS(a)

FIGURE 4.4: ROLLS(b)
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The ROLLS neuromorphic processor is a full-custom, mixed-signal VLSI device with
neuromorphic learning circuits that emulate the biophysics of real spiking neurons
and dynamic synapses [17]. Following, the architecture and the building blocks of
ROLLS will be presented for reference as originally published with only minor changes.
The block-diagram of the neuromorphic processor architecture is given in figure 4.3
and figure 4.4, where S represents the short-term plasticity synapses, L the long-term
plasticity synapses and V the virtual synapse. The device comprises a configurable
array of synapse circuits that produce biologically realistic response properties and
spiking neurons that can exhibit a wide range of realistic behaviors. Specifically, this
device comprises a row of 256×1 silicon neuron circuits, an array of 256×256 learning
synapse circuits for modeling long-term plasticity mechanisms, an array of 256× 256
programmable synapses with short-term plasticity circuits, a 256 × 2 row of linear
integrator filters denoted as virtual synapses for modeling excitatory and inhibitory
synapses that have shared synaptic weights and time constants, and additional pe-
ripheral digital input and output (I/O) circuits for both receiving and transmitting
spikes in real-time off-chip.
The neuromorphic processor was fabricated using a standard 180nm CMOS 1P6M
process. It occupies an area of 51.4mm2 and has approximately 12.2 million transis-
tors. The silicon neurons contain circuits that implement a model of the adaptive,
exponential integrate-and-fire (IF) neuron [18], post-synaptic learning circuits used to
implement the spike-based weight-update/ plasticity mechanism in the array of long-
term plasticity synapses, and analog circuits that model homeostatic synaptic scaling
mechanisms operating on very long time scales [19]. The array of long-termplasticity
synapses comprises pre-synaptic spike-based learning circuits with bi-stable synaptic
weights, that can undergo either long-term potentiation (LTP) or long-term depres-
sion (LTD). The array of short-termplasticity (STP) synapses comprises synapses with
programmable weights and STP circuits that reproduce short-term adaptation dynam-
ics. Both arrays contain analog integrator circuits that implement faithful models of
synaptic temporal dynamics. Digital configuration logic in each of the synapse and
neuron circuits allows the user to program the properties of the synapses, the topology
of the network, and the properties of the neurons. The architecture comprises also
a synapse de-multiplexer static logic circuit, which allows the user to choose how
many rows of synapses should be connected to the neurons. It is a programmable
switch-matrix that configures the connectivity between the synapse rows and the
neuron columns. By default, each of the 256 rows of 1 × 512 synapses is connected
to its corresponding neuron. By changing the circuit control bits, it is possible to
allocate multiple synapse rows to the neurons, thereby disconnecting and sacrificing
the unused neurons. In the extreme case 256 × 512 synapses are assigned to a single
neuron, and the remaining 255 neurons remain unused. An on-chip programmable
bias generator, optimized for subthreshold circuits[page 132]is used to set all of the
bias currents that control the parameters of the synapses and neurons. An analog-
to-digital converter (ADC) circuit converts the subthreshold currents produced by
selected synapse and neuron circuits into a stream of voltage pulses, using a linear
pulse-frequency-modulation scheme, and transmits them off-chip as digital signals.
Finally, peripheral asynchronous I/O logic circuits are used for receiving input spikes
and transmitting output ones, using the AER communication protocol.
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4.1.2.2 Spiking Neural Network Architecture (SpiNNacker)

SpiNNaker is a biologically-inspired, massively parallel computing architecture de-
signed to facilitate the modelling and simulation of large-scale spiking neural net-
works of up to a billion neurons and a trillion synapses in biological real-time. It is a
general-purpose, programmable platform for neuroscientists, psychologists and brain
researchers to explore brain functions with software neuronal models[spi]. Following
description is mainly based on the introduction of SpiNNacker on webpage: http:
//apt.cs.manchester.ac.uk/projects/SpiNNaker/.

FIGURE 4.5: SpiNNacker Chip

The basic building block of the SpiNNaker machine is the SpiNNaker multicore System-
on-Chip. The chip is a Globally Asynchronous Locally Synchronous (GALS) system
with 18 ARM968 processor nodes residing in synchronous islands, surrounded by
a light-weight, packet-switched asynchronous communications infrastructure. The
real cost of computing is energy and thus, energy-efficient ARM9 embedded pro-
cessors and Mobile Double Data Rate(DDR) Synchronous Dynamic Random Access

http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
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Memory(SDRAM) are used, in both cases sacrificing some performance for greatly
enhanced power efficiency.
Figure 4.5 shows a plot of the SpiNNaker die with the area of 102mm2, with the
18 identical processing subsystems located in the periphery, and the Network-on-
Chip and shared components in the center. At start-up, following self-test, one of
the cores is elected to a special role as Monitor Core and thereafter performs system
management tasks. Normally, 16 cores are used to support the application and one
is reserved as a spare for fault tolerance and manufacturing yield-enhancement pur-
poses. Inter-processor communication is based on an efficient multicast infrastructure
inspired by neurobiology. It uses a packet-switched network to emulate the very high
connectivity of biological systems. The packets are source-routed, which means they
only carry information about the issuer and the network infrastructure is responsible
for delivering them to their destinations. The heart of the communications infrastruc-
ture is a bespoke multicast router that is able to replicate packets where necessary to
implement the multicast function associated with sending the same packet to several
different destinations.
SpiNNaker machines are classified by the approximate number of processor cores,
thus the 10N machine has approximately 10N processor cores. The 102 and 103 ma-
chines, which are shows in figure 4.6, are single printed circuit boards, already avail-
able or in the final stages of design. The larger machines are racks or cabinets and
specifications are subject to change. The 102 machine is the 4-node circuit board and
hence has 72 ARM processor cores, which will typically be deployed as 64 application
cores, 4 monitor processors and 4 spare cores. The 102 machine requires a 5V 1A
supply, and can be powered from some USB2 ports. The control and I/O interface is
a single 100Mbps ethernet connection. There is limited provision for connecting cards
together with SpiNNaker links to form larger systems. The 103 machine is the 48-
node board and has 864 ARM processor cores, typically deployed as 768 application
cores, 48 monitor processors and 48 spare cores. The 103 machine requires a 12V 6A
supply. The control interface is two 100Mbps ethernet connections, one for the board
management processor and the second for the SpiNNaker array.

FIGURE 4.6: SpiNNacker Device
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4.1.2.3 Dynamic Neuromorphic Asynchronous Processors (Dynapse)

FIGURE 4.7: Dynapse(a)
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The Dynapse neuromorphic processor is a multi-chip, mixed-signal VLSI device with
4 multi-core neuromorphic processor chip that employs hybrid analog/digital circuits
for emulating synapse and neuron dynamics together with asynchronous digital cir-
cuits for managing the address-event traffic [20]. Like previous section, the descrip-
tion of Dynapse is presented here for reference as originally published in order to
preface the section which follows. For more detailed introduction, following web-
page is another alternative: https://inilabs.com/support/hardware/user-
guide-dynap-se/.
In figure 4.7 the overviews of the Dynapse device as well as of the PCB board are
given. The Dynapse board is a squared PCB of size 184mm × 200mm, which has
cut out to allow the routing of extension cables when multiple PCBs are stacked up.
The Dynapse prototype has a USB2.0 high-speed interface for power and data, a pro-
grammable parallel Address Event Interface (GPIO input/output) which can be used
as native connection to visual sensors like DVS or to other AER devices like silicon
cochlea, several AER Eexpansion slots for interconnecting multiple boardsÂ and 16
analog SMA outputs used to monitor neuron’s membrane potential. The mapping be-
tween AER devices and neuromorphic processors can be stored into SRAM. An FPGA
(XC6SLX25-2CSG324C) can be used to route spikes and for implementing algorithm
and ad-hoc solutions. The Dynapse neuromorphic processor is a beta prototype in
active development.
Figure 4.8 shows the front as well as the back view of the device, where it can be
observed that sixteen analog monitor outputs are placed in the front of the divece,
from which it is possible to simultaneously monitor sixteen analog neurons’ mem-
brane potential. In the back of the device, there is USB high speed interface, power
and service LEDs, 40 PIN AER/GPIO connector.

FIGURE 4.8: Dynapse(b)

https://inilabs.com/support/hardware/user-guide-dynap-se/
https://inilabs.com/support/hardware/user-guide-dynap-se/
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FIGURE 4.9: Monitor

The analog monitors enable to monitor all neurons in the board, but only one neuron
per core can be selected and its membrane potential is sent to its respective SMA
output port.Â The membrane potential is a signal in the range from 0 to 1.8 Volt. With
the help of the visualizer, which will be introduced below, the user can simply click on
the neuron and its membrane potential will be available in its respective output port.
Figure 4.9 shows the wave chart of an active neuron.
Figure 4.10 is the die photo of the multi-core neuromorphic processor. The chip com-
prises four cores, each with 256 neurons as shown in figure 4.11. Neurons belonging
to different cores, and to different chips can interact among each other. Neuron and
synapse dynamics can be programmed via the on-chip bias generators. The chip was
fabricated using a standard 0.18µm 1P6M CMOS technology, and occupies an area
of 43.79mm2, while the core area of the chip layout measures 38.5mm2, of which ap-
proximately 30% is used for the memory circuits, and 20% for the neuron and synapse
circuits [20]. Neurons are implemented using Adaptive-Exponential Integrate and
Fire neuron circuits, which comprise a block implementing N-Methyl-D-Aspartate
(NMDA) like voltage gating, a leak block implementing neuron’s leak conductance, a
negative feedback spike-frequency adaptation block, a positive feedback block which
models the effect of sodium activation and inactivation channels for spike generation,
and a negative feedback block that reproduces the effect of potassium channels to reset
the neuron’s activation and implement a refractory period. The negative feedback
mechanism of the adaptation block and the tunable reset potential of the potassium
block introduce two extra variables in the dynamic equation of the neuron that endow
it with a wide variety of dynamical behaviors [20].
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FIGURE 4.10: Dynapse Chip

FIGURE 4.11: Dynapse Resource
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FIGURE 4.12: Visualizer(a)

One of the great advantages of using Dynapse device is the existence of the visualizer,
which can be used to monitor all the neuron’s activity on computer in real-time as
shown in figure 4.12. For our project, as the disparity detectors, which is the last layer
of the spiking neural network, will serve as the output of the network, a disparity
map will be directly derived by using this visualizer. As can be observed in the figure,
colors refers to different cores CO,C1, C2, C3. Every core has its own bias-generator,
so on the one hand, this allows the parameters of synaptic and neuron on different
core to be set independently, but on the other hand, the parameters of synaptic and
neuron on the same core are unified, which is the foreshadowing of a problem which
will be presented below. Figure 4.13 shows another vision of the visualizer, where the
total as well as valid events per second can be calculated.

FIGURE 4.13: Visualizer(b)
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4.2 THE MODIFIED MODEL ON HARDWARE

As mentioned above, two populations of sensory neurons which come from the DVS
consisting of 128 × 128 pixel arrays serve as the input of the network. This led to
a population of 1283 coincidence detectors and another population of 1283 disparity
detectors. As a result, the total network initially incorporated more than 4 million
neurons. From figure 4.11 it can be calculated that if the Dynapse device is chosen,
there are totally 256 × 4 × 4 = 4096 neurons available, which is far away from the
requisite resource of the entire spiking neural network. Thus, several modifications
are required.

FIGURE 4.14: Modified Model

In figure 4.14, two approaches of simplification of the neural network are proposed,
in order to implement the network on real-time neuromorphic device. The first alter-
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native is to decay the vertical cyclopean coordinate y into a constant height, thereby
the three-dimensional disparity space is decayed into a two-dimensional space and a
horizontal plane is derived. Consequentially, the vertical position information is lost,
but the horizontal coordinate information x and the disparity coordinate information
d remain. Here, a disparity map on a constant height is derived, when a moving object
is "cut" by this plane, its horizontal position and disparity will be captured by the
network. But if the object is moving above or below this plane, it can not be detected.
Another option is to pick up only a few planes with constant disparity, where the
entire horizontal and vertical position information are remain. When a neuron on a
specific plane is active, it means that there is an object occurs on this disparity, and its
position can be obtained by the neuron’s position on the plane.
Furthermore, even if the disparity space is decayed, there is not enough resource on
the neuromorphic device. As a result, the populations of sensory neurons serving as
input to the neural network also need reduction. Here either downsampling or area
selection of the captured images can be chosen as shown in figure 4.15.

FIGURE 4.15: Modified Retina
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4.3 IMPLEMENTATION ON DYNAPSE

4.3.1 Experiments

In this project the Dynapse device was taken as the neuromorphic processor to imple-
ment the spiking neural network for depth perception. As discussed above, a plane
with constant height from the disparity space is chosen, which means that only the
pixels on a single line from each camera is taken as the input of the neural network.
Instead of 128 pixels in one dimensionality on camera, here only 16 pixels are fed into
the network, thus, an entire core with 16 × 16 neurons of Dynapse will represents
the coincidence detector as well as another core represents the disparity detector. As
shown in figure 4.16, 2 × 16 neurons are placed as mapping with the input, when
a neuron on left retina excites, it will propagate this activity to the corresponding
row of the coincidence detector, while the activity of a neuron on right retina will be
propagated to the corresponding column of the coincidence detector. As a result, the
crossing point, which is denoted by darker color in the figure, receive double stimulus
and signals temporally coinciding spikes. The disparity detectors pools responses
from coincidence detector as given in figure 4.17, where red arrows indicate excitative
connectivity, while blue arrows inhibitive connectivity. When a specific neuron Ac on
coincidence detector fire, the corresponding neuron Ad on disparity detector with the
same position will receive excitation from the neurons on coincidence detector which
have the same disparity d as neuron Ac, at the same time, neuron Ad will also receive
inhibition from the neurons on coincidence detector which have the same horizontal
cyclopean coordinate x as neuron Ac. Finally, the winner-take-all mechanism imple-
ment the mutual inhibition among the neurons of disparity detector, executing the
uniqueness rule of the model. When a specific neuron of the disparity detector fire, it
will inhibit all the other neurons located in the same line of sight.

FIGURE 4.16: Implemented Model(a)
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FIGURE 4.17: Implemented Model(b)

4.3.2 Mismatch Problem on Analog Device

In theory, a disparity map capable of capture objects and measure their depth should
be derived on the disparity detector by implementing the spiking neural network on
Dynapse. But actually a disparity map that always indicate wrong disparity of the
objects is obtained, which involves a common phenomenon on analog device: the
mismatch problem.
Random device mismatch that arises as a result of scaling of the CMOS technology
into the deep submicron regime degrades the accuracy of analogue circuits. Device
mismatch is a phenomenon that affects transistors in different ways, depending on
their operating domain. In particular, transistors operated in the sub-threshold do-
main have significantly larger mismatch than transistors operated above threshold
[11], [12]. In analog neuromorphic processors, mismatch brings inhomogeneities in
the response of the silicon neurons and synapses in the chip. An example in [21]
is introduced as reference here in order to clarify the mismatch problem. In figure
4.18, a raster plot of spiking activity measured from a neuromorphic chip comprising
128 putatively identical silicon neurons is given. In this example the neurons are
stimulated with constant current injection, set by a common global bias, thus, ideally
all neurons should have the same firing rates. But given that the neuron circuits
are analog and that the transistors operate in the weak-inversion regime [19], their
response properties vary substantially. As can be observed on the left in the figure,
the neurons’ activity frequencies have obvious difference. Device mismatch effects
in these chips also affect several other neural network properties, such as synaptic
weights and time constants.
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FIGURE 4.18: An example of Mismatch

Involving our project, the mismatch problem effects the spiking neural network in
the form of inhomogeneities of neurons’ parameter. As presented in figure 4.19, the
neurons of coincidence detector are set by a common global bias so that they can
have the same fire threshold, if the membrane potential exceed this threshold, the
neuron will fire. Ideally, all the neurons should have the same fire threshold, but due
to existence of mismatch, the neurons’ fire thresholds have sufficient difference. As
shown in figure 4.19, the neuron at the crossing pointAc of coincidence detector might
have a higher threshold, while another neuron in the same line of sight at position Bc

might have a much lower threshold. This leads to the fact that even the neuron at the
crossing pointAc receives double stimulus, but its membrane potential is still not high
enough to exceed its fire threshold, while the neuron at Bc receives only one spike but
already enough for it to fire. As a result, the neuron at positionBd of disparity detector
will fire and inhibit the neuron at position Ad before it fires because of the mutual
inhibitions among the disparity detectors, leading to a catastrophic consequence that
a wrong disparity map is derived.
Device mismatch can be minimized using standard electrical engineering approaches
and appropriate analog VLSI design techniques. But this leads to very large transistor
sizes and large layout designs, which can significantly reduce the number of neurons
and synapses that can be integrated onto a single chip. Rather than attempting to re-
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FIGURE 4.19: Mismatch in Project

duce mismatch using brute-force engineering approaches, neuromorphic approaches
should try to exploit the adaptation mechanisms and learning strategies that they seek
to model and implement in hardware [21].
Although the mismatch problem is absolutely not welcome in our project, from an-
other view, mismatch can also be exploited to perform specific functions, like imple-
mentation of random features for regression [22], implementation of axonal delays
[21], stochastic computation [23], design of trainable neuromorphic integrated circuit
[24], design of accurate analog circuits [25].
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4.3.3 Solutions to overcome Mismatch

In this section, several solutions to overcome the mismatch problem will be presented.
But in general, none of this solutions can lead to an admirable performance owing to
the fact that mismatch effects not only one single or several parameters of the neurons
and synapses. Almost all the properties on analog device are affected by mismatch.

4.3.3.1 The Inhibition Solution

The first solution improves the connectivity between the sensory neurons and the
coincidence detectors. As the original form, a neuron on left retina will propagate
its activity to the corresponding row of the coincidence detector, but it doesn’t have
influence on the other row. Now, as shown on the left in figure 4.20, if a neuron on left
retina receives spikes and fire, it will not only excite the neurons in the corresponding
row, but also inhibit the other neurons located in different rows. The neurons on right
retina perform the same modification. As a result, even a neuron not at the crossing
point has a very low fire threshold and very easy to fire, it will be inhibited by another
sensory neuron that doesn’t lead to its excitation. The neuron at crossing point is the
only unit that receives excitation but not any inhibition.
But the shortcoming of this solution is also obvious as it is only available for the
situation that the object only lead to one event on each retina. When the object lead
to more than one event, as shown on the right in figure 4.20, all the neurons of coin-
cidence detector will be inhibited. For example, a moving object leads to the activity
of neurons 5 and 6 on the left retina and neurons 9 and 10 on the right retina, so all
the neurons lie in row 5 are inhibited by the sensory neuron 6 on left retina. The same
situation occurs in row 6, as well as column 9 and 10. As a result, none of the neurons
of coincidence detector will fire.

FIGURE 4.20: The Inhibition Solution
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4.3.3.2 The DC-DC-Inhibition Solution

In the second solution a novel double inhibition mechanism is introduced as an im-
provement of the first solution, where an additional layer referred as "inverse layer"
is contained, playing a role as middle layer between the sensory neurons and the
coincidence detectors. This inverse layer includes 16 × 2 neurons and each of them
corresponds to a sensory neuron on either left or right retina. Furthermore, another
bias of the neuron referred as DC is exploited, which is the abbreviation of direct
current. In the neuromorphic processor, the firing rate of a silicon neuron is set by
injecting a constant DC to the neuron membrane capacitance. In other word, if a big
DC was injected to the neuron, it will stay in a very excited state and fire without
receiving any other spikes. Using this principle our new solution is proposed as
shown in figure 4.21. Firstly, the double inhibition mechanism is executed in the form
that each sensory neuron has inhibitive connectivity with its corresponding neuron on
inverse layer, while each neuron on inverse layer will inhibit a signal row or column
of the coincidence detector, taking over the task of the sensory neurons in the first
solution. And then the DC bias of the neurons on inverse layer and coincidence
detector will be set to have a big value, leading to a very excited state of these neurons.
Now, when no object occurs and no spike is generated by the sensory neurons, the
inverse layer is active while the coincidence detector is inactive owing to the inhibition
from the inverse layer. When spikes are delivered by the sensory neurons on both
retina, their corresponding neurons on inverse layer will be inhibited, leading to the
fire of the neuron of coincidence detector at the crossing point.

FIGURE 4.21: The DC-DC-Inhibition Solution
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FIGURE 4.22: The result of DC-DC-Inhibition Solution

This solution is implemented on Dynapse device and the result is presented in figure
4.22, where the red neurons represent the inverse layer, green neurons the coincidence
detector and the blue neurons the disparity detector. Different colors refer to different
cores on a Dynapse chip. A moving object produces activity of the neurons at positions
from 2 to 5 on both retinas, so their corresponding neurons on inverse layer(red) are
inhibited, leading to activity of the coincidence detector(green) in a form of rectangle.
From the disparity detector(blue) it can be observed that the correct disparity (d = 0)
is obtained. As explained in chapter 2, if an object projects to the exact same positions
on both retinas, it is considered to have zero disparity. The result also shows instability
of the network. For example, the neuron at position 4 on inverse layer corresponding
to right retina is failed to be inhibited, bringing a column of coincidence detector in
a inactive state. This happens because of the fact that the mismatch can also effect
the DC bias. Although all the neurons on inverse layer are injected with constant DC,
but their activity vary substantially, some of them in a extremely active state and the
coming spikes from sensory neurons are not strong enough to inhibit them. In general,
this solution has overcome the mismatch problem in a way, but it is not an admirable
antidote.
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4.4 OUTLOOK

Another conceivable solution to overcome mismatch is to exploit the N-Methyl-D-
Aspartate (NMDA) property of the silicon neurons and synapses. In biological field,
NMDA is an amino acid derivative that acts as a specific agonist at the NMDA re-
ceptor mimicking the action of glutamate, the neurotransmitter which normally acts
at that receptor. Unlike glutamate, NMDA only binds to and regulates the NMDA
receptor and has no effect on other glutamate receptors. NMDA receptors are par-
ticularly important when they become overactive during withdrawal from alcohol as
this causes symptoms such as agitation and, sometimes, epileptiform seizures. While
in neuromorphic engineering domain, the silicon neuron of Dynapse comprises a
block implementing NMDA like voltage gating, a leak block implementing neuron’s
leak conductance, a negative feedback spike-frequency adaptation block, a positive
feedback block which models the effect of Sodium activation and inactivation chan-
nels for spike generation, and a negative feedback block that reproduces the effect of
Potassium channels to reset the neuron’s activation and implement a refractory period
[20]. In other simplified clarification, NMDA would be understood as a property
of both silicon neuron and synapse. As a neuron’s property, NMDA plays a role as
another threshold of the neuron’s membrane potential illustrated in figure 4.23. When
the membrane potential is under the NMDA threshold, it will integrate slowly, while
after the membrane potential exceeds the NMDA threshold, it will integrate much
faster.

FIGURE 4.23: NMDA Property



4.4. OUTLOOK 52

FIGURE 4.24: NMDA Solution

NMDA can also performance a peculiar property of synapses that they have no ef-
fect on neurons, unless the neurons has been shortly potentiated through the normal
synapse. This property can be exploited to overcome the mismatch as shown in
figure 4.24. The left population of sensory neurons will be connected to the coinci-
dence detector with normal synapses and the weight of these synapses is set very
samll, so that even the most active neuron of coincidence detector cannot exceed the
NMDA threshold if spikes come through these synapses. While the connectivity of
the right population of sensory neurons and the coincidence detector is built with
NMDA synapses. The weight of these synapses can be set very strong, so that even the
weakest neuron, for which the spike through a normal synapse doesn’t bring it any-
where close to the threshold, will fire if NMDA spike comes shortly after the normal
spike, whereas other neurons in the same column won’t fire if they haven’t received
the normal spike before. In summary, the spikes from left retina come through the
normal synapse alone is not enough to excite the coincidence neurons, because these
synapses are very weak. And the spikes from right retina come through the NMDA
synapse alone cannot excite the coincidence neurons either, because they can only
excite neurons that have shortly received a spike come through the normal synapse.
As a result, only the neuron at crossing point will fire.
Another alternative is to implement the spiking neural network on a digital neuro-
morphic processor like ROLLS or SpiNNacker, because the mismatch problem only
occurs on analog devices. But owing to the fact that the ROLLS processor has too
limited resource and the SpiNNacker processor do not have a visualizer to show the
disparity map, they are not adopted in this project.
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CONCLUSION AND DISCUSSION

The central task of this project is the implementation of the stereo spiking neuron
network on neuromorphic device, which provide an evidence that visual processing
can be performed by neural network based on event-based approach, while the visual
information can be captured by neuromorphic sensors. Nowadays machine vision
processing systems face severe limitations due to the nature of processing static im-
ages derived by conventional frame-based cameras and the classical Von Neumann
computing architecture. The conventional frame-based cameras produce too much
redundant data due to the sampling of sequences of frames at fixed rates, while the
classical Von Neumann computing architecture is not a powerful parallel computing
architectures, and processing so many data consume to much power.
The stereo correspondence problem is the classical challenge in stereo vision domain,
which refers to the problem of finding visual correspondences of the same object
from two different views. This challenge is considered to be ill-posed and can not
be solved without certain assumptions. Marr and Poggio proposed two assumptions
about the physical world to solve this problem, namely the uniqueness rule and the
continuity rule. The uniqueness rule assumpes that each point in each image corre-
sponds to a unique target in the field of view, while the continuity rule assumpes that
the perceived depth varies smoothly except at the edges of objects. The first rule is
derived from the fact that a feature cannot be assigned to multiple objects, as they
would occlude each other from the observer’s view, while the second rule is a direct
consequence for consistent objects. Using these two rules the stereo correspondence
problem is solved and the true targets are successfully identified.
Although this neural network is mainly based on the approach of Marr and Piggio,
it is characterized by two major differences: first, dynamic spatiotemporal visual
information in the form of spike trains, which are directly obtained from event-based
neuromorphic vision sensors, substitute static images serving as inputs to the net-
work; and second, the network is composed of Leaky Integrate-and-Fire (LIF) spiking
neurons operating in a massively parallel fashion. The coincidence detectors signals
all the pairs of spikes come from the corresponding horizontal lines of retinal neurons
within a specific time window into the disparity space, so each spike generated by
a spatial neuron of coincidence detector represents a potential target at the corre-
sponding real-world disparity position. This target would be a true or false target.
In order to suppress false disparities and derive only correct disparities, a binocular
correlation mechanism is implemented by the disparity detectors by integrating the
spikes from coincidence detectors. The spikes come from the constant disparity plane
Ed of coincidence detectors constitute supporting evidence for true matches and will
excite the disparity detector, whereas the spikes come from the constant cyclopean
position plane Ex denotes countervailing evidence and will inhibit the disparity de-
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tector. Among disparity detectors, a winner-takes-all mechanism is performed by the
neurons in the same line of sight, in order to enforce the uniqueness constraint.
During the implementation of the neural network on neuromorphic processors, an
inevitable problem on analog devices, mismatch, brings disastrous result of the ex-
periment, because mismatch leads to sufficient difference between the neurons and
synapses. Although several solutions are proposed to overcome this problem, in
general, none of this solutions can lead to an admirable performance. Another alterna-
tive is to implement the spiking neural network on a digital neuromorphic processor,
which do not influenced by the mismatch problem.
Analog order digital? This is a classical question in electrical engineering field. In
neuromorphic engineering domain, this question turns into whether to use analog
or digital circuits to emulate brain-inspired circuits. This is closely related to the
difference between simulation and emulation. Analog circuits can trully represent
the physical quantities of the model. For example, a synaptic current would be rep-
resented by a real current in the electrical circuit. But the problem is that analog
circuits are prone to the problem of device mismatch. Conversely, digital circuits
use the concept of discretization. A synaptic current would be represented by bits.
Although the performance of digital circuits is robust, they require more devices and
faster signals which can result in a higher power consumption. Another consideration
is that the analog neuromorphic processors are asynchronous, analogous to those
of their real biological counterparts, while the digital neuromorphic processors are
usually limited to a global clock.
In next step, the spiking neural network would be tried to implement on a digital
neuromorphic processor, and see if there is a better performance. And then this visual
system can be validated in a closed sensorimotor loop on an autonomous vehicles,
cooperates with control algorithms and execute more complicated task.
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